Bihar Board Class 8 Maths Solutions Chapter 14 गुणनखंड (factor)Text Book Questions and Answers.
Bihar Board Class 8 Math Solution Chapter 14 गुणनखंड (factor)
bseb class 8 math solution
Bihar Board Class 8 Math Solution गुणनखंड Ex 14.1
गुणनखंड ज्ञात कीजिए Class 8 Bihar Board प्रश्न 1.
दिए गए पदों में सार्व (उभयनिष्ठ) गुणनखंड ज्ञात कीजिए-
(a) 9y, 27
(b) 5x, 25x
(c) 7ab, -14ab
(d) -16x2y2, -x2y2z2
(e) 17x, 102y
(f) 11xyz, 100z
(g) a2bc, ab2c, abc2
(h) 2x, 3y, 5z
(i) 20x2y2, 30y2z2, 40z2x2
(j) 2x (a + b)(b + c), x (a + b)
हल :-
(a) 9y, 27
9y = 3 × 3 × y
27 = 3 × 3 × 3
सार्व (उभयनिष्ठ) गुणनखण्ड
3 × 3 = 9
(b) 5x, 25x
5x = 5 × x
25x = 5 × 5 × x
सार्व गुणनखण्ड
= 5x
(c) 7ab, -14ab
7ab = 7 × a × b
-14ab = -2 × 7 × a × b
सार्व गुणनखण्ड
= 7ab
(d) -16x2y2, -x2y2
-16x2y2 = -(2 × 2 × 2 × 2 × x × x × y × y)
-x2y2z2 = -(x × x × y × y × z × z)
सार्व गुणनखण्ड
-( x × x × y × y) = x2y2
(e) 17x, 102y
17x = 17 × x
102y = 6 × 17 × y
सार्व गुणनखण्ड
= 17
(f) 11xyz, 100z
11xyz = 11 × x × y × z
100z = 2 × 2 × 5 × 5 × z
सार्व गुणनखण्ड
= z
(g) a2bc, ab2c, abc2
a2bc = a × a × b × c
ab2c = a × b × b × c
abc2 = a × b × c × c
सार्व गुणनखंड
a × b × c = abc
(h) 2x, 3y, 5z
2x = 2 × x × 1
3y = 3 × y × 1
5z = 5 × z × 1
सार्व गुणनखंड
= 1
(i) 20x2y2, 30y2z2, 40z2x2
20x2y2 = 2 × 2 × 5 × x × x × y × y
30y2z2 = 2 × 3 × 5 × y × y × z × z
40z2x2 = 2 × 2 × 2 × 5 × z × z × x × x
सार्व गुणनखण्ड
2 × 5 = 10
(j) 2x (a + b)(b + c), x (a + b)
2x (a + b) (b + c) = 2 × x × (a + b) × (b + c)
x (a + b) = x × (a + b)
सार्व गुणनखण्ड
= x(a + b)
क्र. सं | पद | अलग किया गया गुणनखंड | शेष गुणनखंड |
i. | 12x2y | 3x | 4xy |
ii. | 15ab | -3 | ………. |
iii. | -20xy | -2xy | ………. |
iv. | 40x2y2 | ………….. | -20 |
v. | -27abc | ………….. | -3ab |
क्र. सं | पद | अलग किया गया गुणनखंड | शेष गुणनखंड |
i. | 12x2y | 3x | 4xy |
ii. | 15ab | -3 | -5ab |
iii. | -20xy | -2xy | 10 |
iv. | 40x2y2 | -2x2y2 | -20 |
v. | -27abc | 9c |
गुणनखंड कक्षा 8 Bihar Board प्रश्न 3.
निम्नलिखित का गुणनखण्ड ज्ञात कीजिए-
(a) 12x2 – 15y2 – 24x2z2
(b) -6a2 + 36a – 24ab
(c) 3a2 + ab + 9a + 3b
(d) 6ab – 4b + 6 – 9a
(e) ab2 + a2b + ac + bc
(f) a2bc + b2ca + c2ab + a + b + c
(g) a(b – c) + d (c – b)
(h) 3y(y + 3) + 6y(3y + 9)
(i) a3 – 3a2 + a – 3
(j) ab2 – bc2 – ab + c2
(k) xy (a2 + b2) + ab (x2 + y2)
हल :-
(a) 12x2 – 15y2 – 24x2z2
= 2 × 2 × 3 × x × x – 3 × 5 × y × y – 2 × 2 × 2 × 3 × x × x × z × z
= 3(4x2 – 5y2 – 8x2z2)
(b) -6a2 + 36a – 24ab
= -2 × 3 × a × a + 2 × 2 × 3 × 3 × a – 2 × 2 × 2 × 3 × a × b
= -6a (a – 6 + 4b)
(c) 3a2 + ab + 9a + 3b
= a (3a + b) + 3(3a + b)
= (3a + b) (a + 3)
(d) 6ab – 4b + 6 – 9a
= 2b (3a – 2) – 3 (3a – 2)
= (3a – 2) (2b – 3)
(e) ab2 + a2b + ac + bc
= ab (b + a) + c (b + a)
= (b + a) (ab + c)
(f) a2bc + b2ca + c2ab + a + b + c
= abc (a + b + c) + 1 (a + b + c)
= (a + b + c) (abc + 1)
(g) a(b – c) + d (c – b)
= ab – ac + dc – db
= a(b – c) – d(c – b)
= (a – d) (b – c)
(h) 3y (y + 3) + 6y (3y + 9)
= 3y2 + 9y + 18y2 + 54y
= 21y2 + 63y
= 21y (y + 3)
(i) a3 – 3a2 + a – 3
= a2(a – 3) + 1 (a – 3)
= (a – 3) (a2 + 1)
(j) ab2 – bc2 – ab + c2
= b(ab – c2) – 1(ab – c2)
= (ab – c2) (b – 1)
(k) xy(a2 + b2) + ab (x2 + y2)
= xya2 + xyb2 + abx2 + aby2
= ay(ax + by) + bx(ax + by)
= (ay + bx) (ax + by)
Bihar Board Class 8 Math Solution गुणनखंड Ex 14.2
bseb class 8 math solution
Bihar Board Class 8 Math Solution Chapter 14 गुणनखंड(factor)
Bihar Board Class 8 Math Solution प्रश्न 1.
निम्नलिखित व्यंजकों का गुणनखंड ज्ञात कीजिए-
(a) 1 + 2x + x2
(b) a2b2 – 6abc + 9c2
(c) 1 – (a – b)2
(d) 16 (a – b)2 – 9 (a + b)
(e) (x + y)2 – 10 (x + y) + 25
(f) (a + b)2 – 4ab
(g) 4x2 – y2+ 4y – 4
(h) 9x2 – n2/4
(i) a2 + a + 4 + 3a
(j) x2 + 6x + 8
(k) y2 – 13y + 30
(l) x2 + 9x – 22
हल :-
(a) 1 + 2x + x2
सर्वसमिका (सूत्र) का प्रयोग करके,
(a+b)2 = a2 + 2ab + b2
= (1)2 + 2.1.x + (x)2
= (1+x)2
= (1+x) (1+x)
(b) a2b2 – 6abc + 9c2
सर्वसमिका (सूत्र) का प्रयोग करके,
a2 – 2ab + b2 = (a-b)2
= (ab)2 – 2.ab.3c + (3c)2
= (ab – 3c)2
= (ab – 3c) (ab – 3c)
(c) 1 – (a – b)2
सर्वसमिका (सूत्र) का प्रयोग करके,
a2 – b2 = (a+b) (a-b)
= (1)2 – (a-b)2
= [ 1 + (a-b) ] [ 1 – (a-b) ]
= ( 1 + a – b ) ( 1 – a + b )
(d) 16 (a – b)2 – 9 (a + b)
सर्वसमिका (सूत्र) का प्रयोग करके,
a2 – b2 = (a+b) (a-b)
= (4)2 ( a-b)2 – (3)2 ( a + b )2
= [{4(a-b)}2 – { 3 (a+b)}2]
= ( 4a – 4b )2 – ( 3a + 3b )2
a2 – b2 = (a+b) (a-b)
= (4a-4b + 3a+3b) ( 4a-4b – (3a-3b)
= (7a – b) (a – 7b)
(e) (x + y)2 – 10 (x + y) + 25
सर्वसमिका (सूत्र) का प्रयोग करके,
a2 – 2ab + b2 = (a-b)2
= (x+y)2 – 2.(x+y).5 + (5)2
= (x + y – 5)2
= (x + y – 5) (x + y – 5)
(f) (a + b)2 – 4ab
सर्वसमिका (सूत्र) का प्रयोग करके,
(a+b)2 = a2 + 2ab + b2
= a2 + 2ab + b2 – 4ab
= a2 – 2ab + b2
= (a-b)2
= (a-b) (a-b)
(g) 4x2 – y2+ 4y – 4
= (4x2 – (y2 – 4y + 4)
सर्वसमिका (सूत्र) का प्रयोग करके,
a2 – 2ab + b2 = (a-b)2
= 4x2 – { (y)2 – 2.y.2 + (2)2}
= (2x)2 – (y-2)2
a2 – b2 = (a+b) (a-b)
= [ (2x + (y-2)] [ (2x – (y-2)]
= (2x + y – 2 ) (2x – y + 2)
(h) 9x2 – n2/4
(i) a2 + a + 4 + 3a
= a2 + 4a +4
सर्वसमिका (सूत्र) का प्रयोग करके,
(a+b)2 = a2 + 2ab + b2
= a2 + 2.a.2 + (2)2
= (a+2)2
= (a+2) (a+2)
(j) x2 + 6x + 8
= x2 + 4x + 2x + 8
= x (x+4) +2 (x+4)
= (x+4) (x+2)
(k) y2 – 13y + 30
= y2 – 10y – 3y + 30
= y (y-10) -3 (y-10)
= (y-10) ( y-3)
(l) x2 + 9x – 22
= x2 + 11x – 2x – 22
= x (x+11) -2 (x + 11)
= (x + 11) (x-2)
Bihar Board 8th Class Math Solution प्रश्न 2.
निम्नलिखित व्यंजकों का गुणनखण्ड कीजिए-
(a) x2 – 6x – 135
(b) 8(x + y)3 – 50(x + y)
(c) 4x2 + 9y2 + 12xy – 1
(d) 75 – x2 + 10x
(e) 12a2 – 27
(f) ax2 – bx2 + by2 – ay2
हल :-
(a) x2 – 6x – 135
= x2 – 15x + 9x – 135
= x (x – 15) + 9 (x – 15)
= (x – 15) (x + 9)
(b) 8(x + y)3 – 50(x + y)
= 2 (x+y) [ 4 (x+y)2 – 25]
सर्वसमिका (सूत्र) का प्रयोग करके,
a2 – b2 = (a+b) (a-b)
= 2 (x+y) [{2(x+y)}2 – (5)2]
= 2 (x+y) {2 (x+y) – 5)} { 2 ( x+y) + 5)
= 2 (x+y) (2x+2y-5) ( 2x+2y+5)
(c) 4x2 + 9y2 + 12xy – 1
सर्वसमिका (सूत्र) का प्रयोग करके,
(a+b)2 = a2 + 2ab + b2
= (2x)2 + (3y)2 + 2(2x) (3y) – 1
= (2x + 3y)2 (1)
a2-b2 = (a+b) (a-b)
= (2x + 3y – 1) (2x + 3y + 1)
(d) 75 – x2 + 10x
= -x2 + 10x + 75
= -x2 – 5x + 15x + 75
= -x (x + 5) 15 (x + 5)
= (x + 5) (15 – x)
(e) 12a2 – 27
= 3 (4a2 – 9)
= 3 [ (2a)2 – (3)2 ]
a2 – b2 = (a+b) (a-b)
= 3 (2a-3) (2a+3)
(f) ax2 – bx2 + by2 – ay2
= ax2 – ay2 – bx2 + by2
= a (x2 – y2) -b (x2 – y2)
= (x2 – y2) (a – b)
= (x-y) (x+y) (a-b)
Bihar Board Class 8 Math Solution Chapter 14 गुणनखंड(factor)
bseb Class 8 Math Solution प्रश्न 3.
निम्नलिखित व्यंजकों का गुणनखंडन कीजिए-
(a) 16x4 – 81y4
(b) x4 – 1
(c) x4 – (x – y)4
(d) 9x2 – 4y2 – 3x + 2y
(e) (x + y) + 4 (x + y)2 + 4x + 4y
हल :-
(a) 16x4 – 81y4
a2 – b2 = (a+b) (a-b)
= (4x2)2 – (9y2)2
= (4x2 + 9y2) (4x2 – 9y2
a2 – b2 = (a+b) (a-b)
= [(2x)2 – (3y)2] (4x2 + 9y2)
= (2x + 3y) (2x – 3y) (4x2 + 9y2)
(b) x4 – 1
a2 – b2 = (a+b) (a-b)
= (x2)2 – (1)2
= (x2 + 1) (x2 – 1)
= (x2 + 1) (x – 1) (x + 1)
= (x – 1) (x + 1) (x2 + 1 )
(c) x4 – (x – y)4
a2 – b2 = (a+b) (a-b)
= (x2)2 – {(x – y)2}2
= [x2 – (x – y)2] [x2 + (x-y)2]
a2 – b2 = (a+b) (a-b)
= (x -(x-y) (x+x-y) [x2 + (x-y)2]
= (x-x+y) (x+x-y) [x2 + x2 + y2 – 2.x.y]
= y(2x-y) (2x2+y2-2xy)
(d) 9x2 – 4y2 – 3x + 2y
a2 – b2= (a+b) (a-b)
= (3x)2 – (2y)2 – 3x + 2y
= (3x – 2y) (3x + 2y) – (3x – 2y)
= (3x – 2y) (3x+2y-1)
(e) (x + y) + 4 (x + y)2 + 4x + 4y
= (x+y)3 + 4 (x + y)2 + (x + y)
= (x +y) [(x + y)2 + 2.(x + y) 2 + (2)2]
= (x + y) (x + y + z) (x + y + z)
Bihar Board Class 8 Math Solution गुणनखंड Ex 14.3
bseb class 8 math solution
Bihar Board Class 8 Math Solution Chapter 14 गुणनखंड(factor)
Class 8 Math Bihar Board प्रश्न 1.
निम्नलिखित का भाग कीजिए-
(a) -2x2yz का 4xyz से
(b) −1/2 xy का x/2 से
(c) (3x2)5 का (9x2)3 से
(d) (7x5)2 × (3y5)5 का 27y3 से
(e) 8x6y6 का -4x4y6 से
Gunankhand Math Class 8 प्रश्न 2.
दिए गए बहुपद को एकपदी से भाग कीजिए-
(a) (5m3 – 30m2) ÷ 5m
(b) (12x4 – 6x2) ÷ (-3x2)
(c) (5x2 – 15x) ÷ (x – 3)
(d) (6x4 + 9x3 – 12x2) ÷ 3x2
Class 8 Maths Bihar Board प्रश्न 3.
भाग कीजिए-
(a) (a2 + 8a + 16) ÷ (a + 4)
(b) {(a + b)2 – 4ab} ÷ (a – b)2
(c) (a4 – b4) ÷ (a2 – ab)
(d) (x4 – 81) ÷ (x2 + 9)
(e) 121x2 + 16y2 – 88xy ÷( 4y – 11x)
(f) (x2 – x – 30) ÷ (x – 6)
(g) {p2 – p + 1/4 } ÷ {p – 1/2}
(h) (x2 – 5xy + 6y2) ÷ (x – 2y)
(i) (27x3 + 3x2 – 2x + 8) ÷ (3x – 2)